Effects of fructose-1,6-bisphosphate on morphological and functional neuronal integrity in rat hippocampal slices during energy deprivation.

نویسندگان

  • Y Izumi
  • A M Benz
  • H Katsuki
  • M Matsukawa
  • D B Clifford
  • C F Zorumski
چکیده

D-fructose-1,6-bisphosphate, a high energy glycolytic intermediate, attenuates ischemic damage in a variety of tissues, including brain. To determine whether D-fructose-1,6-bisphosphate serves as an alternate energy substrate in the CNS, rat hippocampal slices were treated with D-fructose-1,6-bisphosphate during glucose deprivation. Unlike pyruvate, an endproduct of glycolysis, 10 mM D-fructose-1,6-bisphosphate did not preserve synaptic transmission or morphological integrity of CA1 pyramidal neurons during glucose deprivation. Moreover, during glucose deprivation, 10-mM D-fructose-1,6-bisphosphate failed to maintain adenosine triphosphate levels in slices. D-fructose-1,6-bisphosphate, however, attenuated acute neuronal degeneration produced by 200 microM iodoacetate, an inhibitor of glycolysis downstream of D-fructose-1,6-bisphosphate. Because (5S, 10R)-(+)-5-methyl-10, 11-dihydro-5H-dibenzo [a,d]cyclohepten-5,10-imine, an antagonist of N-methyl-D-aspartate receptors, exhibited similar protection against iodoacetate damage, we examined whether (5S, 10R)-(+)-5-methyl-10, 11-dihydro-5H-dibenzo [a,d]cyclohepten-5,10-imine and D-fructose-1,6-bisphosphate share a common neuroprotective mechanism. Indeed, D-fructose-1,6-bisphosphate diminished N-methyl-D-aspartate receptor-mediated synaptic responses and partially attenuated neuronal degeneration induced by 100-microM N-methyl-D-aspartate. Taken together, these results indicate that D-fructose-1,6-bisphosphate is unlikely to serve as an energy substrate in the hippocampus, and that neuroprotective effects of D-fructose-1,6-bisphosphate are mediated by mechanisms other than anaerobic energy supply.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fructose-1,6-bisphosphate stabilizes brain intracellular calcium during hypoxia in rats.

BACKGROUND AND PURPOSE Exogenously administered fructose-1,6-bisphosphate reduces neuronal injury from hypoxic or ischemic brain insults. To test the hypothesis that fructose-1,6-bisphosphate prevents changes in intracellular calcium ([Ca2+]i) and high-energy phosphate levels, we measured [Ca2+]i, intracellular pH (pHi), and adenosine triphosphate in cultured rat cortical astrocytes and cortica...

متن کامل

beta-Hydroxybutyrate fuels synaptic function during development. Histological and physiological evidence in rat hippocampal slices.

To determine whether ketone bodies sustain neuronal function as energy substrates, we examined the effects of beta-hydroxybutyrate (betaHB) on synaptic transmission and morphological integrity during glucose deprivation in rat hippocampal slices. After the depression of excitatory postsynaptic potentials (EPSPs) by 60 min of glucose deprivation, administration of 0.5-10 mM D-betaHB restored EPS...

متن کامل

Neuroprotective Effect of D-Fructose-1,6-Bisphosphate against β-Amyloid Induced Neurotoxicity in Rat Hippocampal Organotypic Slice Culture: Involvement of PLC and MEK/ERK Signaling Pathways

D-fructose-1,6-bisphosphate (FBP) is an endogenous intermediate of glycolytic pathway which has potent neuroprotective effect against various neurotoxic insults. This study examined whether FBP could antagonize the neurotoxicity induced by amyloid β-peptide (Aβ) in rat hippocampal organotypic slice cultures, and the possible mechanism was also explored. Treatment with FBP (concentration ranges ...

متن کامل

Neuroprotective effect of D-fructose-1,6-bisphosphate against beta-amyloid induced neurotoxicity in rat hippocampal organotypic slice culture: involvement of PLC and MEK/ERK signaling pathways.

D-fructose-1,6-bisphosphate (FBP) is an endogenous intermediate of glycolytic pathway which has potent neuroprotective effect against various neurotoxic insults. This study examined whether FBP could antagonize the neurotoxicity induced by amyloid beta-peptide (Abeta) in rat hippocampal organotypic slice cultures, and the possible mechanism was also explored. Treatment with FBP (concentration r...

متن کامل

Endogenous monocarboxylates sustain hippocampal synaptic function and morphological integrity during energy deprivation.

The ability to fuel neurons via glycogenolysis is believed to be an important function of glia. Indeed, the slow, rather than immediate, depression of synaptic transmission in hippocampal slices during exogenous glucose deprivation suggests that intrinsic energy reservoirs help to sustain neurotransmission. It is believed that glia fuel neighboring neurons via diffusible monocarboxylates such a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuroscience

دوره 116 2  شماره 

صفحات  -

تاریخ انتشار 2003